Lego Spike CNC

MaFEA – Making Future Education Accessible PR3 - EDUCATIONAL LEARNING PATHS

Technology tools:	Hardware: Lego Spike Prime		
	Software: <u>Lego Spike download</u> or <u>Lego Spike online use</u>		
Tool version:			
	No optional tools		
Date:	9-13 /05/2023		
College:	Emmaüs secundair Aalter, Belgium		
Author (optional):			
Subject of the lesson(s):	Designing and upgrading a machine while programming with word blocks		
Target group	13-14 years of age		

MAREA mafea.eu

MaFEA - Making Future Education Accessible

Lesson title/subject: CNC- Machine / designing, upgrading, programming

Intention: What do you wish for or hope to happen? (Intentions are often not measurable or tangible, but help you in developing the design process.)

- 1. The aim of the lesson is for students to evaluate and improve a basic design of a CNC machine, <u>Bottom</u> and <u>Top</u>.
- 2. With every adjustment to the basic design, the software has to be modified accordingly.
- 3. The students already have knowledge of programming with word blocks

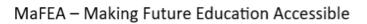
Desired Outcomes: One or more measurable and tangible goals the teacher aims for with this lesson/these lessons.

- 1. The students make a program to print letters with the basic machine. Extra challenge: the students print letters with combined movements.
- 2. The students improve the design of the basic machine. (engineering)
- 3. The students build in a third motor and print the letters separately. (engineering + programming)
- 4. Peer-evaluation: At the end they have to assess each other's work, effort and involvement.

Agenda: HOW are you going to reach the goals? Description of the lesson plan / educational activities / working methods.

- 1. The students already have knowledge of programming with word blocks.
- 2. The first part of the lesson is an explanation of the assignment and some background information.
- 3. For the next step the students work in small groups to complete the assignment.

Roles: Who facilitates what? Who participates? What do we expect of the students?


- 1. The students work in groups of 2 or 3. They divide the work within the group. There are 3 roles. You have the engineer, the programmer and the administrator.
- 2. As a teacher, you will support the engineering at the request of the students. Some groups can work completely independent, others need a little push.

Rules: Rules or principles are about how you want to learn and work together.

- 1. The students can already program with word blocks
- 2. The students know the basics of Lego Spike Prime
- 3. The students know in advance how they will be evaluated.

Time: Describe the time path: What time do we start / finish / break? When is the time for reflection? What happens between contact times?


- 1. You need 2 lessons of 100 minutes for this project. The intro and the basic machine take up about 40min. From that point on it depends on how quickly the students find a solution to their problem. Trial and Error.
- 2. At the end, 15 minutes are provided to dismantle the machine and sort the box. In this way, the next group can start smoothly.

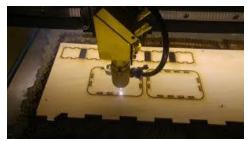
CNC-machine

Lego Spike

MLPE (

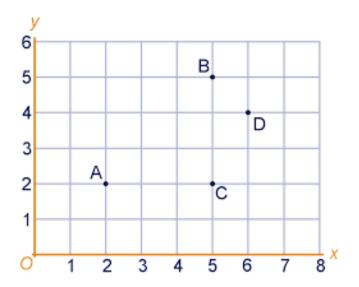
MaFEA - Making Future Education Accessible

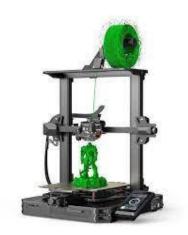
1. Problem


The printer is broken and we urgently need to print a document. Build a printer using the SPIKE and print your initials!

2. Design/Research

2.1 What is a printer?


A printer is actually a CNC machine. This is a computer-controlled machine used to manipulate or process materials. To do this, you first create a 2D or 3D drawing (LibreCad, RdWorks, Autocad, Tinkercad...) that the machine (plasma cutter, laser cutter, 3D printer...) can work with.



The machine uses coordinates from the drawing program to perform the correct operation. You already know this system from math class where you use the X and Y axis for a 2D representation. For a 3D representation, this is the X, Y, and Z axis.

Task: Fill in the coordinates in the table using the graph:

Α	(,)
В	(,)
С	(,)
D	(,)

MaFEA - Making Future Education Accessible

You can divide the CNC machines into 2 groups:

Group 1: The cutting machines

Within this group, the machine will manipulate the material in such a way that it removes/cuts away pieces of this material. This can be done in various ways.

Spiral drill Surfacing router cutter		Router cutter	Sheet cutting	
When drilling, you	Here, the machine	Here, the machine will	Water, sand or a laser	
only go straight down.	will move the router	move the milling cutter	beam is useda to cut	
After all, you want to	cutter in the 3 axes:	in the 3 axes:	through the material.	
make a nice straight	1st up and down	1st up and down		
hole.	2nd left and right	2nd left and right		
So, one axis.	3rd front and back.	3rd front and back. This		
	This is all combined.	is all combined.		

Group 2: The non-cutting machines

Within this group, the machine will add material to the material to be processed. A well-known example of this is the regular printer where 2 motors control the x and y axis to get the ink in the right place. The 3D printer is also applicable here.

Which group does our printer belong to?

Cutting machine / Non-cutting machine

Marea.eu

MaFEA - Making Future Education Accessible

3. Make

3.1 Building the hardware

Go to the "Lego Spike education" app, choose "build", select "CNC machine" and follow the building instructions.

When building this CNC machine, you will use the following major parts, but what do they do?

Programmable HUB

This is the computer of the system. It has 6 ports (A, B, C, D, E and F). These ports can be used as both input and output.

The hub has a 6-axis gyro sensor built in to determine the position of the hub.

Small motor

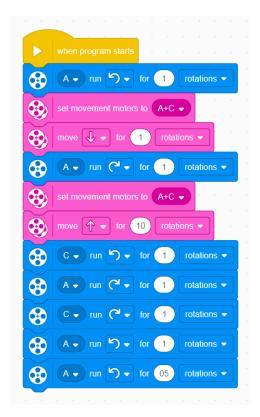
This allows you to move parts or your entire machine.

There is a zero position provided.

The position can vary between 0° and 359°.

You can measure the position and speed of this motor.

This motor has less power than the large motor.


3.2 Programming the software

Go to the "Lego Spike education" app, choose "Start", select the various tutorials to learn the basic instructions.

By means of motor controls and movements, you can move the printer. Make sure that you write the initials "MG" with your CNC machine. You can see this depicted in the example shown on the right.

Note:

- Check if your motors are set up through the correct port.
- The settings are not yet correct or complete. You will have to adjust and test this yourself to get a good print.

MaFEA – Making Future Education Accessible

4. Testing

Test your program until you get a good print.

5.	Evaluate			
Did t	Did the programming go smoothly? If not, where did it get difficult?:			
Is th	e construction of the printer sturdy and solid? If not, what is not sturdy or solid?			
	If not, does this cause printing problems?			

MaFEA – Making Future Education Accessible

6. Expansion 1

6.1 Problem

Your evaluation should show that your CNC machine is not sturdy enough to print smoothly, or that improvements can be made.

5.2 Design/Research	
What can be improved on your CNC machine?	
Jpgrade your CNC machine to a sturdier version. Write down or sketch your ideas below.	
	_
5.3 Make	
mplement your modification.	
5.4 Testing	
Test your modification.	

6.5 Evaluate

Were your modifications successful? If not, go back to step 6.2 to make changes to your design.

MaFEA - Making Future Education Accessible

7. Expansion 2

7.1 Problem

So far, our CNC machine can only move on the X and Y axes. When inserting paper or leaving space between the letters, you still have to do this manually.

7.2 Design/Research

How can you solve the problem?		

One possibility is to make the bridge move with the extra motor. You can do this with the large motor.

Large motor

This allows you to move parts or your entire machine.

There is a zero position provided. The position can vary between 0° and 359° .

You can measure the position and speed of this motor.

Jpgrade your CNC machine to enable this application. Write down or sketch your ideas below.						

7.3 Make

Implement your modification.

7.4 Testing

Test your modification

MaFEA – Making Future Education Accessible

7.5 Evaluate

successful?
successful

If not, where do you think it went wrong?

Go back to step 7.2 to make changes to your design.

Peer evaluation

Enter the name of your group member and highlight what fits

Name				
Effort	Gave up very quickly when things didn't work.	Gave up quickly when things didn't work but regained momentum after feedback.	Gave up sometimes but took the initiative to take on the task again.	Kept persevering and looking for a solution.
Engagement	Was not at all involved in group work.	Was often not involved in group work.	Was sometimes not involved in group work.	Was always involved in group work.

Name				
Effort	Gave up very quickly when things didn't work.	momentum after	took the initiative to take on the task	Kept persevering and looking for a solution.
Engagement	Was not at all involved in group	feedback. Was often not involved in group	again. Was sometimes not involved in	Was always involved in group work.
	work.	work.	group work.	0 1